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Abstract
We introduce a novel method that combines 
differential geometry, kernels smoothing, and 
spectral analysis to quantify facial muscle activity 
from widely accessible video recordings, such as 
those captured on personal smartphones. Our 
approach emphasizes practicality and accessibility. 
It has significant potential for applications in 
national security and plastic surgery. Additionally, it 
offers remote diagnosis and monitoring for medical 
conditions such as stroke, Bell's palsy, and acoustic 
neuroma. Moreover, it is adept at detecting and 
classifying emotions, from the overt to the subtle. 
The proposed face muscle analysis technique is an 
explainable alternative to deep learning methods 
and a non-invasive substitute to facial 
electromyography (fEMG).

Methodology
Initially, we extract face manifolds from video frames 
and convert them into a canonical face 
representation to minimize the effects of background 
and head movements. Next, we apply the 
Lucas-Kanade algorithm to create a vector field that 
estimates muscle movements between frames in the 
canonical face representation. To make these results 
more interpretable, this vector field is further 
smoothed using multiple kernels and is then overlaid 
on the original video. We evaluate this pipeline using 
327 videos from the CK+ Dataset, each featuring 
individuals exhibiting one of seven basic emotions.

Introduction
As a fundamental aspect of human communication, 
facial expressions convey emotions, feelings, and 
personal identities. Traditional facial muscle 
movement analysis mainly employs facial 
electromyography (fEMG) to detect muscle 
contractions and relaxations. However, fEMG's need 
for specialized equipment and expertise renders it 
inflexible and unsuitable for quick prediagnosis. As 
an alternative, the Facial Action Coding System 
(FACS) uses visualization-based methods to 
categorize facial actions into Action Units (AUs). 
Despite its capability to capture distinct facial 
expressions, FACS is time-consuming, subject to 
bias, and unsuitable for large sample studies. To 
mitigate these limitations, researchers have explored 
automated scoring systems employing techniques 
like probabilistic likelihood classifiers, and Dynamic 
Bayesian Networks for AU modeling. Although deep 
learning approaches have shown promising results, 
their lack of explainability poses challenges for those 
without domain expertise. Although research has 
sought to interpret facial recognition outcomes,  
these studies have neither considered the 
importance of facial muscle movements for clinical 
applications nor effectively eliminated the 
confounding effects of background noise and head 
movements.

Conclusion
We present an end-to-end approach for dynamically quantifying 
facial muscle movements. Our method assesses these 
movements by tracking pixel displacements on a corresponding 
canonical face, allowing for accurate measurement even when 
the face is in motion or turned sideways. We develop a 
multi-kernel smoothing method to enhance the interpretability of 
face recognition deep learning models, highlighting the 
movements of specific muscle groups while filtering out noise 
from video recordings. Despite these advancements, capturing 
the facial manifold accurately, especially at its boundaries, 
remains a challenge and an area for future refinement. We also 
plan to improve this methodology to apply our kernels more 
precisely to the contours of facial muscles.
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Visualizations of FAN (without Face-GPS) using the Grad-CAM package. 
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Facial muscle tracking with our kernel smoothing technique, from the CK+ Dataset

Model Average Accuracy

Face-GPS without FAN 85.0%

Face-GPS with FAN 86.1%

Accuracies of an XGBoost Classifier trained on displacement vectors from DISC in 
predicting emotions from the CK+ Dataset. They show  the effectiveness of the kernel 

smoothing technique to provide informative features for predictive models and analysis.
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